Phosphorylation status of the Kep1 protein alters its affinity for its protein binding partner alternative splicing factor ASF/SF2.

نویسندگان

  • Cécile Robard
  • Alex Daviau
  • Marco Di Fruscio
چکیده

Mutations in the Drosophila kep1 gene, encoding a single maxi KH (K homology) domain-containing RNA-binding protein, result in a reduction of fertility in part due to the disruption of the apoptotic programme during oogenesis. This disruption is concomitant with the appearance of an alternatively spliced mRNA isoform encoding the inactive caspase dredd. We generated a Kep1 antibody and have found that the Kep1 protein is present in the nuclei of both the follicle and nurse cells during all stages of Drosophila oogenesis. We have shown that the Kep1 protein is phosphorylated in ovaries induced to undergo apoptosis following treatment with the topoisomerase I inhibitor camptothecin. We have also found that the Kep1 protein interacts specifically with the SR (serine/arginine-rich) protein family member ASF/SF2 (alternative splicing factor/splicing factor 2). This interaction is independent of the ability of Kep1 to bind RNA, but is dependent on the phosphorylation of the Kep1 protein, with the interaction between Kep1 and ASF/SF2 increasing in the presence of activated Src. Using a CD44v5 alternative splicing reporter construct, we observed 99% inclusion of the alternatively spliced exon 5 following kep1 transfection in a cell line that constitutively expresses activated Src. This modulation in splicing was not observed in the parental NIH 3T3 cell line in which we obtained 7.5% exon 5 inclusion following kep1 transfection. Our data suggest a mechanism of action in which the in vivo phosphorylation status of the Kep1 protein affects its affinity towards its protein binding partners and in turn may allow for the modulation of alternative splice site selection in Kep1-ASF/SF2-dependent target genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible phosphorylation differentially affects nuclear and cytoplasmic functions of splicing factor 2/alternative splicing factor.

The Ser/Arg-rich (SR) proteins constitute a family of highly conserved nuclear phosphoproteins that are involved in many steps of mRNA metabolism. Previously, we demonstrated that shuttling SR proteins can associate with translating ribosomes and enhance translation of reporter mRNAs both in vivo and in vitro. Here, we show that endogenous, cytoplasmic splicing factor 2/alternative splicing fac...

متن کامل

Phosphorylation-dephosphorylation differentially affects activities of splicing factor ASF/SF2.

SR proteins are a conserved family of splicing factors that function in both constitutive and activated splicing. We reported previously that phosphorylation of the SR protein ASF/SF2 enhances its interaction with the U1 snRNP-specific 70K protein and is required for the protein to function in splicing, while other studies have provided evidence that subsequent dephosphorylation can also be req...

متن کامل

The second RNA-binding domain of the human splicing factor ASF/SF2 is the critical domain controlling adenovirus E1A alternative 5'-splice site selection.

The human splicing factor ASF/SF2 (alternative splicing factor/splicing factor 2) is modular in structure with two RNA-binding domains (RBD1 and RBD2) and a C-terminal domain rich in arginine-serine dipeptide repeats. ASF/SF2 is an essential splicing factor that also functions as an important regulator of alternative splicing. In adenovirus E1A (early region 1A) alternative pre-mRNA splicing, A...

متن کامل

RNA recognition motif 2 directs the recruitment of SF2/ASF to nuclear stress bodies.

Heat shock induces the transcriptional activation of large heterochromatic regions of the human genome composed of arrays of satellite III DNA repeats. A number of RNA-processing factors, among them splicing factor SF2/ASF, associate with these transcription factors giving rise to nuclear stress bodies (nSBs). Here, we show that the recruitment of SF2/ASF to these structures is mediated by its ...

متن کامل

Interaction between the N-terminal domain of human DNA topoisomerase I and the arginine-serine domain of its substrate determines phosphorylation of SF2/ASF splicing factor.

Human DNA topoisomerase I, known for its DNA-relaxing activity, is possibly one of the kinases phosphorylating members of the SR protein family of splicing factors, in vivo. Little is known about the mechanism of action of this novel kinase. Using the prototypical SR protein SF2/ASF (SRp30a) as model substrate, we demonstrate that serine residues phosphorylated by topo I/kinase exclusively loca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 400 1  شماره 

صفحات  -

تاریخ انتشار 2006